

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at validinternet@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4, available at http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

 Your issue must follow the following template before posting one. Any of which that doesn’t follow this template will be closed and will requested to reopen another following this template.

Title

Your issue title must be a 5-15 words giving a brief abstract of your problem.

Examples, the second one showing how to ref to issue that you think might be caused by another issue, already open

Syntax Error on Pengnuin.py, line 45

Unable to change nickname on runtime, ref. issue #12

Body

Your body must give a detailed information on what actually is troubling you. Must be relevant to your issue and your title, failing wich issue will be locked for further proceedings.

Your issue may give a abstract of pieces of code you think might be troubling (If you can find one).

Make your body in a simple english, and easy to understand.

The footer may contain a Thanks note to thank anyone willing to help in the near future.

Conversations

Your conversations in the issue musn’t go beyond the topic scope. Failing which issue will be locked.

Timeline

AS2 & AS3 CPPS Emulator, written in Python.
Timeline is built heavily on Twisted and is even-driven.

Timeline docs now live at https://times-0.github.io/

Mandatory account activation

Timeline v7.5+ makes it mandatory to activate your account. New registered penguin get a trial period of 7 days, within which the user must activate their account using the provided email. If not, they won’t be able to login after 7 days of register, unless account activated (unlike Disney’ policy of deleting your account instead)

Friend list update

Timeline v7.6+ integrates support for Disney’s friends list. Make sure you follow this link to set it up in your server - Times-0 > Friends-CP [https://github.com/Times-0/Friends-cp]

EPF update

After persistent request, the EPF with no real reason for it’s existance is being revived. You asked it, so edit your database by executing the below SQL

ALTER TABLE `penguins` ADD `agent` INT(1) NOT NULL DEFAULT '0' AFTER `cover_icon`, ADD `epf` VARCHAR(50) NOT NULL DEFAULT '0%0' AFTER `agent`;

AS2 + AS3 Cross-compatible Server

Timeline v7.4+ supports AS2+AS3 cross compatible server. What this means for you is that, you run a single server that can accept both AS2 and AS3 clients, both at the same time

Note: There still needs some fix for certain packets that differ from AS2 to AS3, this will be looked into in the near future

Default server is now a cross-compatible AS2+AS3 server.

Server Jumping

Timeline v7.3 or later supports In-game Server Jumping feature. To use this make sure you have setup your client already. You can visit docs for detailed guide on adding Server Jumping feature to the client.

Firebase Integration

Timeline v7.2 or later supports the integrated Firebase, autologin system. To use this, make sure you have compatible client setup already. You can visit docs for detailed guide on how to setup Firebase login system.

This integration is optional, yet recommended. No data loss, or account loss will be experienced during this integration. Any account not using firebase, will be automatically converted upon login

Real-time Message Filter [Perspective API]

Timeline v7.1 or later, supports real-time filtering of messages, based on toxicity in the content of speech. Using the Google’s intelligent AI based Perspective API, it’s now made possible to have more child-friendly environment.

The Perspective API Key provided by default is just for testing/development/educational purpose. Please don’t use the same key for your production server. You must get yourself whitelisted from Google, and get yourself a key for your server.

Visit this Quickstart Guide to Perspective [https://github.com/conversationai/perspectiveapi/blob/master/quickstart] to get yourself a key. Don’t worry, you’ll mostly get whitelisted within a day.
Look into Timeline > Handlers > Messages # Line 76 [https://github.com/Times-0/Timeline/blob/master/Timeline/Handlers/Messages.py#L76] for more details, on how to effectively use your key.

Important Upgrade Notice (From Timeline v>= 7)

From the version 7 of Timeline, there is a strict implementation, forcing you to follow a database convention, in order to make it easy to upgrade to newer database sturcture without any chaos. All new database, using new database structure should follow the nomenclature: database name should end with line. Example, timeline, waddle-line, waddleupline, and so on.

Everyone who started using v7, and want to migrate data from older version, are requested to use the python script DatabasePort.py to port all your old data into the new database structure.

Note It is recommended to run the script as sudo (on UNIX server). ie, sudo python DatabasePort.py, in-order to have an error free, and smooth experience.

Of all the chaos what do you yet? You get a sweet, charm, more flexible, server, which has on-the air, real-time updation of data. And everyone’s favourite CJ Fire v/s Sensei. What more you think could suffice this? Oh yeah, some bugs and filaments are cleaned up too :~)

Oh and, upgrade Twisted module if you haven’t already :~D

AS2 and AS3 Cross-Compatibility

The flexibility of Timeline, makes sure it’s cross-compatible with both AS2 and AS3 clients.

From the version 6 of Timeline, Timeline can run both AS2 and AS3 Servers at once. One solution for multiple problems. AS2 is integrated into the AS3 Piece of pie, with some tweaks and added extra flavors. No loss of performance, experience, and stability has been made during this compatibility upgrade. It indeed works better than ever before. Timeline v6 is ready for production too.

For convenience, here, we refer both Timeline AS2 and AS3 as Timeline.

For detailed information, visit here [https://aureus.pw/topic/1619-timeline-stable-as3-cpps-server/]

Visit the official test server, where you can see, test and try all features of current version of Timeline, in real time: https://timeline.valid22.pw

Contribution

Timeline is a free, open-source project.

Requirements

	Software:

	Python 2.7.X

	MySQL, with MySQL-c and MySQL-python connector

	Redis server

	Python Modules:

	Twisted [https://twistedmatrix.com]

	Watchdog [http://pythonhosted.org/watchdog/]

	txredisapi [https://github.com/fiorix/txredisapi]

	Twistar [http://findingscience.com/twistar/]

	BCrypt [https://pypi.python.org/pypi/bcrypt/]

	lxml [http://lxml.de/installation.html]

	numpy [http://www.numpy.org/]

	colorlog [https://github.com/borntyping/python-colorlog]

	A Python MySQL Connector. (Timeline uses MySQLdb by default, you can change this in Database/__init__.py : 31)

	mysql-connector-python : pip install mysql-connector-python

	mysql-python, Ref: Installing MySQL-Python

Extras

	Websocket Extension - Timeline.sock [https://github.com/Times-0/Timeline.sock] - A simple mixin which makes timeline compatible with Websocket connections.

	Register for Timeline [https://github.com/Times-0/Register-cp/] - Official Register/signup utility for Timeline. This comes in with, email verify tool builtin (both email checkup and account authentication).

	Friends list [https://github.com/Times-0/Friends-cp] HTML-based original CP styled Friends list.

	Timeflex Webserver [https://github.com/Times-0/TimeFlex] and a brand new automated login system [https://times-0.github.io/member]

You can use the following to add more features and customization to your CPPS:

	FindFour AI [https://github.com/Times-0/Timeline-FindFourAI/] - An intelligent, human like bot, with whom you can play FindFour matches with.

	Commands [https://github.com/Times-0/Timeline/blob/master/Timeline/Plugins/Commands] - Comes with Timeline by default. Enables users to use shortcut commands with the chat system.

Note: There maybe many other plugins not listed in the above list, the above are ones officially tested and found to be working and 100% legit

Installation and Usage

Download Timeline, put it in an accessible and readable directory. Navigate to that directory using CMD or Shell or any console client. Run Start.py. The server will start running.

You can edit Start.py to change Handlers module scope, TCP IP/Port endpoints, Logger etc. You can also add new methods!

Make sure you run MySQL and Redis server before starting the server.

Please run DatabasePort.py to create tables in your database. It also auto recreated db for you, you just need a spare databse beforehand. (ie, old dbname as spare db, new db name as the one you want to create)

Installing mysql-python (MySQLdb)

Who hadn’t had trouble installing MySQLdb (MySQL-python) package for Python on Windows!

If you are on UNIX environment (ie Ubuntu, Linux, etc), the following should work just fine

sudo pip install MySQL-python

But, the same in Windows, should be a lot messy, so instead try executing the following command instead. Before that, move the command console into the directory in which you have installed Timeline (eg: cd C:\Users\Times\Desktop\Timeline-master

pip install MySQL_python-1.2.5-cp27-none-win_amd64.whl

if that didn’t work, try this

pip install MySQL_python-1.2.5-cp27-none-win32.whl

That’s it. All the connectors are baked. :~)

Default

	Default database : timeline

	Default user : username: test, password: password

	Default crumbs directory : ./configs/crumbs/

IMPORTANT :
By default Timeline uses colored logger, so you must install ‘colorlog’. If you wish not to use it and go by classical logger, change the following line

TimelineLogger = InitiateColorLogger()

to

TimelineLogger = InitiateLogger()

Features

Timeline is almost complete, covering support for all features present in native CP and any classical CPPS. Below is an adaptive list briefing such features:

	Login [AS2, AS3]

	Server Jumping [AS3]

	Inventory [AS2, AS3]

	Purchasing [AS2, AS3]

	Clothing [AS2, AS3]

	Moderator [AS2, AS3]

	Stealth Moderator [AS3] AS2 client natively doesn’t support stealth mod, even if Timeline does

	Mascots [AS2, AS3]

	Rooms (spawning) [AS2, AS3]

	Postcards [AS2, AS3]

	EPF [AS2, AS3]

	Chatting [AS2, AS3]

	Stamps [AS2, AS3]

	Puffles [AS2, AS3]

	Puffle adoption [AS2, AS3]

	Puffle digging [AS3] Puffle Digging is AS3 exclusive feature, AS2 client doesn’t support it

	Rainbow puffle quest [AS3] Rainbow puffle is AS2 only, AS2 client doesn’t support it

	Gold puffle quest [AS3] Golden puffle is AS3 only,

	Golden nuggets [AS3] * AS2 client doesn’t support it*

	Igloo [AS2, AS3]

	Player actions [AS2, AS3]

	Player interactions [AS2, AS3]

	Player movements [AS2, AS3]

	Player informatics [AS2, AS3]

	Sound Studio (Music) [AS3] Sound studio is an AS3 exclusive feature, AS2 client doesn’t support it

	Friends [AS2, AS3]

	Games (Single Player) [AS2, AS3]

	Find Four (Multiplayer-Table) [AS3]

	Mancala (Multiplayer-Table) [AS3]

	TreasureHunt (Multiplayer-Table) [AS2, AS3]

	Sled Racing (Multiplayer-Waddle) [AS3] todo as2

	Card Jitsu (Multiplayer-Waddle) [AS3] todo as2

	Card Jitsu v/s Sensei (Single Player) [AS3] todo as2

	Card Jitsu Fire (Multiplayer-Waddle) [AS3] todo as2

	Card Jitsu Fire v/s Sensei [AS3] todo as2

	Card Jitsu Water (Multiplayer-Waddle) [AS3] todo as2

Support

If you have any issue, found any bug or error or issue, or want to suggest some improvemnt, you are free to open an issue or request a pull request.

Commands

Commands let you invoke custom functions using some shortcuts codes/commands from the chat system.

Default

Prefix: !

Using command: !<command_name> command_param_1 command_param_2 command_param_3 ... command_param_n
Example, !jr 100, !jr [name] Town

Usage

This command system is very elegant and easy to use.

 If you are to add new commands within the Commands.py file, click me Find __commands__ in the file Commands.py, and add your custom commands to it.
For example, if your __commands__ looks like

__commands__ = ["jr"]

and you want to add a new command ac (which can be used like !ac), you just add ac to the list as follows

__commands__ = ["jr", "ac"]

Now that the Plugin knows such command ac exists, all you need to do next is make a function that can process that command,
for that find this line

GeneralEvent.on('command=jr', self.JoinRoomByExtId)

Below the same (without changing indents), add the following

GeneralEvent.on('command=ac', self.AddCoinsToTheUser)

Now that you have a function AddCoinsToTheUser, you must define it, add that function in the same class :-).
For example,

from Timeline.Database.DB import Coin

def AddCoinsToTheUser(self, client, params): # The parameters are exact and doesn't change
 coins = int(params[0])
 Coin(penguin_id=client['id'], transaction=coins, comment="Coins earned by playing Command").save()

 If you are to use this in a different plugin click me First you need to include the dependency/requirement for commands plugin, then add it to __commands__, then invoke a event for it.

Let’s take an example plugin of TestPlugin, which does the same as above, adding coins.

from Timeline.Utils.Plugins.IPlugin import IPlugin, IPluginAbstractMeta, Requirement
from Timeline.Utils.Plugins import extend

from Timeline.Server.Constants import TIMELINE_LOGGER, LOGIN_SERVER, WORLD_SERVER
from Timeline.Database.DB import Coin

import logging

class TestPlugin(IPlugin):
 """Testing commands outside commandPlugin"""

 requirements = [Requirement(**{'name' : 'Commands', 'developer' : 'Dote'})]
 name = 'TestPlugin'
 developer = 'None'

 command = "ac" # the command you are going to test

 def __init__(self):
 super(TestPlugin, self).__init__()

 self.logger = logging.getLogger(TIMELINE_LOGGER)

 CommandsPlugin = self.dependencies[0]
 if self.command not in CommandsPlugin.__commands__:
 CommandsPlugin.__commands__.append(self.command)

 GeneralEvent.on('command={}'.format(self.command.lower()), self.handleAddCoins)
 self.logger.debug("Add Coins Command set. Command : %s", self.command)

 def handleAddCoins(self, client, params):
 coins = int(params[0])
 Coin(penguin_id=client['id'], transaction=coins, comment="Coins earned by !AC Command").save()

NOTE: All the commands must be in lowercases while adding to __commands__, but while using it you can use it as preferred

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

